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Abstract

This is the final report for ONR contract number N00014-86-C-0775. It describes
the PegaSys languages, methodology, and techniques for specifying and reasoning about
system structures. PegaSys supports both visual and textual specification, where pic-
tures are intuitive representations of logical assertions written in the textual language.
To mitigate the problems of scale, the PegaSys methodology supports both horizon-
tal and vertical hierarchies and provides for user-defined abstractions in specifications.
Since PegaSys is based on logic, it can reason about designs and programs. For example,
it can prove (automatically) that a structural design hierarchy is correct and find (auto-
matically) a conservative approximation of the semantic effects of changes to programs.
These advances will allow the PegaSys environment to be considerably more powerful
than the CASE tools currently used in industry to develop large software systems.

The first part of this report presents a scenario that illustrates the basic ideas behind
the PegaSys languages and methodology. The underlying logic is a decidable subset
of Ehdm, a state-of-the-art formal specification language developed in the Computer
Science Laboratory. The second part of the report presents the details of our technique
for deducing the effects of changes to a program. (Changes to a design are not handled.)
The new material presented in this report is not implemented in PegaSys at this time.
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Chapter 1

Sample PegaSys Scenario

1.1 Introduction

The PegaSys language and methodology is intended for use in the visual structuring of
large software designs. A system is partitioned by a hierarchy of linked diagrams, rep-
resenting abstract system requirements as well as concrete implementation structures.
The exact relationship between levels in a hierarchy is specified explicitly.

The PegaSys system has several unique features not present in other CASE tech-
nologies.

Refinement hierarchies. A PegaSys system specification is a collection of di-
agrams linked together "horizontally" to form complete design levels and "ver-
tically" to construct refinements that bring the existing structures closer to an
efficient, practical realization. Most CASE methodologies support the develop-
ment of horizontal hierarchies (sometimes called leveling). None support true
vertical hierarchies, and we consider this to be one of PegaSys' unique strengths.
Vertical hierarchies are crucial in system design, implementation, and evolution
because of the inherent differences between abstract and concrete realizations of
the same system.

" Multiple representations. Diagrams are supposed to make it easy to see rela-
tionships among objects. If this clarity is lost, the advantage of diagrams is lost.
An inherent problem with diagramming techniques is that diagrams can become
very cluttered and too large for a single page or monitor. Diagram decomposition
(leveling) can help to some degree, but it also can cause a loss of context because
of the large number of small pieces that must be related.

1



2 Chapter 1. Sample PegaSys Scenario

The PegaSys methodology increases comprehensibility by providing for a visual
and a textual representation of the same specification. A diagram is seen as a
visual representation of a more compact logical assertion. The textual assertion
can contain more information than the diagram itself. In fact, multiple diagrams
can be associated with a single assertion, each diagram providing a different "view"
of the assertion.

* Logical precision. Pictures are intuitive representations of logical assertions,
allowing inferences to be drawn about an individual picture or a collection of
pictures. For example, it is possible to determine whether a picture at a given
level in a design hierarchy is a correct refinement of a higher-level picture. This
kind of analysis cannot be added easily to existing CASE tools.

* Flexibility. Diagrams can contain new concepts that are defined in terms of the
predefined primitives. Existing approaches to structural design provide a small,
fixed set of primitive relations, and it is not possible to build up new relations
from the primitives. As a consequence, designs often are too concrete and not
truly hierarchical.

" Unified model. PegaSys provides a single, unified design model. Existing
methodologies use two or more separate models accompanied by various mech-
anisms for relating the models. For example, the Hatley/Pirbhai design technique
involves data flow diagrams, control flow diagrams, and architectural diagrams,
but no clear methodology is given for connecting the models.

1.2 Overview of the PegaSys Methodology

A structural specification of a hardware/software system consists of a collection of linked
diagrams. An individual diagram denotes objects and interrelationships among the ob-
jects. Active objects, such as processes and subprograms, accept input and produce
results, while passive objects, such as types and variables, represent the data manipu-
lated by active objects. Both active and passive objects can be passed as arguments to
active objects.

Objects are grouped together into modules. Modules can be used to hide implemen-
tation details through selective exporting of names. A module can be generic in that
it can be parameterized by types and constants. A generic module can be instantiated
to form an unparameterized module, which is referred to as a module instance. Generic
modules provide an effective mechanism for design reuse.

Explicit links between diagrams are used to build two kinds of hierarchies, each
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of which is useful in structuring large systems. Typically, a structural description of
a system starts with abstract functional structures, such as dataflow diagrams, which
ultimately are refined into detailed, implementation-level structures. The links between
diagrams make explicit the intended relationships between the diagrams.

1.2.1 Hierarchies

Diagrams are linked together "horizontally" to form complete design levels and "verti-
cally" to construct refinements. A horizontal hierarchy is a set of diagrams that elabo-
rate some large diagram from a collection of smaller diagrams, in much the same way
that a large program is built from smaller program units. A vertical hierarchy refines or
implements a diagram at one level of abstraction in terms of diagrams containing more
concrete objects and interconnections. The intent is not to add new structures, but to
bring the existing ones closer to an efficient, practical realization.

The PegaSys methodology allows precise specification of the mapping between levels
in a vertical hierarchy. The mapping describes how to interpret the concepts of a given
level in terms of those of a more abstract level in a vertical hierarchy. More specifically,
the objects and interconnections (relations) at a given level in a vertical hierarchy must
be placed in (one-to-many) correspondence with the the objects and relations at the
next lower level.1

Every horizontal hierarchy (i.e., each level in the vertical hierarchy) is expected to
be complete with respect to the given level of detail. This is important so that we can
conclude that, if a connection is not specified, it does not exist. For example, if two
processes have no direct connection in a diagram, we want to be able to conclude that
they do not pass messages to each other. This would be invalid unless if we had not
assumeed that all inter-process communication was specified.

In a vertical hierarchy, there can be three kinds of refinements: dependency re-
finement, active-object refinement, and passive-object refinement. Suppose that two
processes communicate by message passing. A dependency refinement may implement
the concept of message passing by the reading and writing of a shared variable. An
active-object refinement may implement a process by means of several sequential sub-
programs. A passive-object refinement may specify the exact structure of messages.

'The concept of vertical refinement is somewhat similar to the concept of model in logic. In particular,

the mapping from one level in a vertical hierarchy to the next lower level is analagous to an interpretation

that maps a logical theory to its model.
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1.2.2 Two-Tiered Representation

The PegaSys methodology takes into account that diagrams can become very cluttered,
difficult to understand, and sometimes ineffective at representing a design decision. In
particular, PegaSys provides a two-tiered representation of a system specification. At
one level are logical diagrams; at the other level is the textual assertion that the diagram
depicts. Multiple diagrams can be used to provide different views of the same assertion.

The textual description of a system can contain more information that the corre-
sponding diagram(s). In fact, a diagram should be viewed as a combination of graphics
and text. For example, it may be easier to specify a data structure in text. If that is
the case, it should be possible to enter the specification textually and not be forced to
develop suitable icons. In general, a PegaSys user should be able to enter specifications
almost entirely graphically, entirely textually, or in some combination of both.

Any textual description of a system should be written in a language that is expressive
and suitable for effective communication among its human users. PegaSys provides a
language that attempts to meet these requirements.

Underlying the textual language is a logic that is more austere and suitable for
mechanical analysis by computer. However, the PegaSys user need not be aware of this
language.

1.3 Developing Specifications in PegaSys

In this section, we will develop a simple specification that is represented both diagram-
matically and textually. We will introduce the PegaSys language and methodology by
means of a simple example, namely, a vending machine.

The vending machine accepts coins and a product selection from a customer, dis-
penses the product to the customer if the payment is sufficient, and returns the correct
change if the deposited amount is too much. If the product is not available, all coins
are returned. We do not want the customer to make a selection without entering coins,
and we prohibit a product from being dispensed before the customer's selection and
payment have been validated.

Before we begin to design the vending machine, it is important to understand that
we will not specify what the machine is intended to do. Instead, we specify the structure
of the vending machine.

To get started, we draw a so-called context diagram, shown in Figure 1.1, that shows
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the inputs and outputs of the vending machine. In particular, the diagram shows four
input data flows and four output data flows; the source, sink, and the vending machine
itself are modeled as concurrent processes. The numbers in the bubbles are bookkeeping
aids and do not affect the meaning of the diagram.

object product status

products slug

Figure 1.1: Vending Machine Interface

The context diagram is intended to provide an intuitive yet precise specification of
system dependencies. These dependencies must be implemented at lower levels in the
design of the vending machine. If we want to know exactly what the context diagram
says, we must look at the underlying textual specification, only part of which is depicted
in the diagram.
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We will develop the textual specification in pieces. First, we introduce several value
domains, or types, that are referred to in the diagram.

coin, slug: TYPE
object: TYPE = coin I slug
selection, coin-return-request, products, product-status: TYPE

These declarations introduce seven new types. The structure of type object is specified;
namely, it is required to be either a coin or a slug. However, the structure of the other
types is left unspecified for the moment.

In these declarations, TYPE is a keyword. By convention, PegaSys keywords are
written in uppercase, but they can be written in any case. For example, TYPE, Type,
type, and even tYpE are all the same keyword. Identifiers, however, are case-sensitive:
coin and Coin are different identifiers. PegaSys identifiers consist of a letter (upper or
lower case), followed by any sequence of letters, digits, and underscore characters. As
with many programming languages, adjacent PegaSys keywords and/or identifiers must
be separated from each other by spaces. Unlike most programming languages, PegaSys
declarations and expressions are not terminated by semicolons.

Next, we need to declare the "signatures" of the active objects and the predicates
that we intend to use. The "source" process takes no value as input and produces values
of four different types as output. In PegaSys this is expressed as

source: PROCESS [-> object, selection, coin-return-request, products]

The other two processes are declared in a similar manner.

vending-product: PROCESS [object, selection, coin-returnrequest, products
-> product-status, products, coin, slug]

sink: PROCESS [product-status, products, coin, slug -> I

Dependencies among the declared objects are specified using the predefined predicate

dflow: FUNCTION [process, process, type -> BOOLEAN]

which is true provided the first process passes values of the specified type to the second
process. (A predicate is simply a function with return type BOOLEAN.) In particular, we
have
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in: ASSERT dflow(source, vendingmachine,
{object, selection, coin-returnzxequest, products})

out: ASSERT dflow(vending-machine, sink, {product.status, product, coin, slug})

These flow relations are called assertions because they make claims about the imple-
mentation at the next level in the vertical hierarchy. The labels in and out allow us to
refer to the associated relations by name. The set notation in

in: ASSERT dflow(source, vending-nachine,
{object, selection, coin-return-request, products})

is a convenient shorthand for

inl: ASSERT dflow(source, vending-machine, object)
in2: ASSERT dflow(source, vending-nachine, selection)
in3: ASSERT dflow(source, vending-machine, coin-return-request)
in4: ASSERT dflow(source, vending-nachine, products)

Having specified the objects and relations in the context specification, we have only
one thing left to do. We must decide whether any of the three processes (bubbles in
the diag-am) are just convenient abstractions that are not intended to be represented
directly i, the implementation of the vending machine. You can think of such bubbles
as bookkeeping mechanisms for keeping track of sets of lower-level bubbles.

In our example, the vending-product process is not intended to be implemented
directly. This is not apparent in the diagram, but it must be made explicit in the textual
representation of the diagram. The clause

REPLACE vending-product WITH vending-machine CALL]

says that the vending-product bubble will be physically replaced by an object called
vending-machine with the same parameters as vending-product. The keyword ALL
saves us the trouble of listing the parameters. This view of refinement is analagous to
the concept of macro expansion in assembly languages. It is also the view supported
by most CASE systems. (Later, we will see an example in which a bubble cannot be
replaced by the bubbles that implement it.)

We can now pull all of this together into the PegaSys module called vm-io in Fig-
ure 1.2. A PegaSys module is rather like a module or package in some modern program-
ming languages: it serves to group related things together into a unit that can be used
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many times over, and it serves to delimit the scope of identifiers. By default the identi-
fiers declared in a module are not visible outside the module unless they axe explicitly
"exported." functions and predicates, which are constants of a certain "higher" type).
The EXPORTING construct is used to list the identifiers that are to be visible outside the
module.

vmio: MODULE

-- declarations of input/output values

coin, slug: TYPE
object: TYPE = coin I slug

selection, coin-return-xequest, products, produ.t -status: TYPE

-- the environment

source: PROCESS [ -> object, selection, coin.return-request, products]
sink: PROCESS [product-status, products, coin, slug -> ]

-- the product

vending-product: PROCESS [object, selection, coin-return-request, products
-> product-status, product, coin, slug]

-- logical decomposition

REPLACE vending-product WITH vending-machine [ALL]

-- wiring of vmio objects
in: ASSERT dflow(source, vending-machine,

object, selection, coin-return-request, products)
out: ASSERT dflow(vendingJmachine, sink, product-status, products, coin, slug)

END vm-bio

Figure 1.2: Textual Specification of Vending Machine Interface

The specification in Figure 1.2 can be derived from the diagram in Figure 1.1, except
for the REPLACE statement. We will see several more examples of diagrams that only
partially represent the text.
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1.4 Horizontal Hierarchies

We now proceed to build a horizontal hierarchy, using the context diagram in Figure 1.1
as the starting point. The hierarchy will be horizontal because there will not be an
important change in representation. In particular, we further elaborate the dataflow
decomposition of the vending machine before making decisions about how to implement
it.

1.4.1 External Interfaces: Parameterization and Wiring

The diagram in Figure 1.3 illustrates a dataflow design for a vending machine. The
dashed arrows do not denote a specific flow relation; they represent required inputs and
computed outputs. For ex.,mple, the bubble labeled "coin receptacle must be invoked
with values of type "object" and it produces values of type "slug". The method of
transmission is left unspecified and, in general, there are many ways to transmit values.
A specific method of transmission is made explicit when the diagram is integrated into
a given context. We avoid overspecification to increase the likelihood that the diagram
will be reused.

Let us begin developing the textual representation of the vending machine. The in-
terface types are not declared locally; they are parameters of a generic vending-machine
module that encapsulates the entire diagram.

vending-machine: MODULE [object, slug, coin, product-status,
products, coin.return-request, selection: TYPE]

The required local types (i.e., those not visible to clients of the module) are declared
without any indication as to their internal structure.

sufficient-payment, current-payment, coin-detected, change-due,
status, product-id, product-availability_info, coinreturn-status,
customer-selection: TYPE

Next, we declare the processes in the diagram, paying close attention to how each
process is intended to be "wired up" to its clients. The keyword IN indicates an input
parameter and the keyword OUT indicates an output parameter. Using these conven-
tions, the following signature specifies how to wire the "coin receptacle" process into an
external context.
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cor producf

~object slug sau

product
CO~flCOII ~status

receptacle dispenser dispa
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payen
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Figure 1.3: Vending Machine
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coin-receptacle: PROCESS [IN object -> OUT slug, current-payment, coin-detected]

The "coin receptacle" process requires an external input of type obj ect and produces
an external output of type slug. The other two outputs are for the internal wiring
of the vending machine and are not visible to clients of the vending machine module.
In general, there can be many different ways to wire up a process. It is necessary to
differentiate internal and external parameters to guarantee that we get the intended
wiring. The internal wiring of vending-machine is specified using the dflow relation.

The "product vending controller" is a logical abstraction that we do not intend to
represent directly in an implementation. In particular, we want to replace the associated
bubble with a diagram, which we indicate by

REPLACE product.vending-controller WITH pvc [ALL]

Module pvc will be defined next.

The complete textual specification for the vending machine is contained in Figure 1.4.
The fact that vending-machine is a generic module is not represented in Figure 1.3;
neither is the fact that product..vendingcontroller is intended to be eliminated by
macro substitution.

1.4.2 Uses Decomposition

A large diagram is built from pices in two ways: through replacement modules and
through used modules. The PegaSys constructs that link modules in these ways are
the REPLACE and the USING clauses, respectively. We have seen two examples of the
former where a bubble was replaced by a diagram. The original bubble was more of an
organizational device than a design concept. In contrast, used modules perform much
the same role as subprograms in a conventional programming language, which are not
expanded as macros at the level of the source code. The distinction is important because
replaced bubbles need not be implemented in a vertical hierarchy. •

A used module is contained in the diagram in Figure 1.5. The module labeled "price
table manager" is an independent module used to provide mutual exclusion for a shared
table that contains the price of each product. The table manager module hides the
representation of the table from users of the table. If we allowed the table manager to
be expanded as a macro, the internal representation of the table would be visible to
clients, thereby violating the principles of information hiding.

The price table manager provides two types and one operation to clients.
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vending-machine: MODULE [object, slug, coin, productstatus,
products, coinreturn-request, selection: TYPE]

-- internal value domains

sufficient-payment, current-payment, coin-detected, change-due,
status, productid, product-availabilityinfo, coin-returnstatus,
customer-selection: TYPE

-- wire into external context

coin-receptacle: PROCESS
[IN object -> OUT slug, current-payment, coin-detected]

coin-dispenser: PROCESS [change-due -> OUT coin]
product.status.display: PROCESS [status -> OUT product-status]
product-dispenser: PROCESS

[IN products, product.id -> product.availability.info, OUT products]
selection-register: PROCESS

[IN selection, IN coin.return.request
-> customer-selection, coin-return-status]

productvendingcontroller: PROCESS
[coin-detected, current-payment, productavailabilityinfo,
customer-selection, coin-return-status
-> sufficient-payment, change-due, product-id]

-- logical refinement
REPLACE product -vending.controller WITH pvc [ALL]

-- internal wiring

cr : ASSERT dflow(coinreceptacle,product-vending-controller,
coin-detected, current-payment)

pdl : ASSERT dflow(product-dispenser, productstatusdisplay, status)
pd2 : ASSERT dflow(product.dispenser, product_vending_controller,

product-availability-info)
sr : ASSERT dflow(selection-register, product-vending-controller,

customer-selection, coinreturnstatus)
pvcl: ASSERT dflow(productvending.controller, coin-receptacle,

sufficient-payment)
pvc2: ASSERT dflow(product-vending-controller, coin-dispenser, change-due)
pvc3: ASSERT dflow(product-vending.controller, product-dispenser, product.id)

END vending-machine

Figure 1.4: Textual Specification of Vending Machine
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product.id, price: TYPE
get-price: PROCESS [product-id -> price]

Consistent with our style thus far, we have not specified the structure of the types. (An
operation to fill the table has been omitted since it is not used in the example.) We will
show how the table is represented when we build the vertical hierarchy.

The table manager must also ensure that only certain operations are exported to
users.

EXPORTING get-price, product.id, price

So far, all declared objects are exported, but the price table will be defined later and
it will not be exported. The table manager interface specification is contained in Fig-
ure 1.6.

pricetablemngr: MODULE -- this will be a monitor
EXPORTING get-price, product.id, price

-- price table hidden from clients
product.id, price: TYPE

get-price: PROCESS [product-id -> price]

END pricetable-mngr

Figure 1.6: Textual Specification of Price Table Manager

We are now ready to specify the product vending controller. The technique is es-
sentially the same as the one used for the vending machine, with one exception. The
controller imports the table manager, so that it can reference the objects exported by
the controller.

pvc: MODULE [ ... : TYPE]

USING price-table.mngr

validate-payment: PROCESS
[ ... productid, price -> ... product-id]

END pvc
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The ellipses indicate omitted text. The table manager is imported by the USING clause,
making types product-id and price visible within the pvc module.

The complete specification of the pvc module can be found in Figure 1.7. The
fact that pvc is a generic module and that pricet able.mngr is used (and not macro
expanded) is not depicted by the diagram in Figure 1.5.

pvc: MODULE [coin-detected, current-payment, product.availabilityinto,
customer-selection, coin.return-status, sufficient-payment,
change-due: TYPE]

USING pricetablemngr -- functional decomposition

validate-payment: PROCESS
[IN current-payment, IN coin-detected, IN coin-return-status,
product-id, price

-> OUT change-due, OUT sufficient-payment, sufficient-payment, productid]
getvalidselection: PROCESS

[IN product-availabilityinfo, IN customerselection, sufficient-payment

-> OUT productid, product-id]

vpl : ASSERT dflov(validatepayment, pricetablemngr!getprice, productid)
ptbl: ASSERT dflow(price-table.mngr!getprice, validate-payment, price)
vp2 : ASSERT dflow(validatepayment, get-valid-selection, sufficient-payment)
vs : ASSERT dflow(getvalidselection, validate-payment, productid)

END pvc

Figure 1.7: Textual Specification of Product Vending Controller

In assertions vpl and ptbl, you will notice the name

price.table-mngr !get.price

This is a fully qualified name, that is, the name of a declared object prefixed by the
name of the module in which the declaration appears and separated by an exclamation
point. Unqualified names within a module must be unique. Consequently, every entity
is identified uniquely by its fully qualified name. Qualification of names serves to dis-
ambiguate meanings when simple names are not sufficient. Hence, in our example, the
qualification was unnecessary.
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1.5 Vertical Hierarchies

A vertical hierarchy brings an existing horizontal hierarchy closer to an efficient imple-
mentation. Two levels in a vertical hierarchy are connected by an explicit mapping that
describes how to interpret the concepts of the higher, more abstract diagram in terms
of those of the lower, more concrete diagram. We will see how to specify this mapping
in the next section. In this section, we construct three different kinds of refinements to
the vending machine design:

" Passive-object refinement. Unstructured types will be given a suitable struc-
ture.

" Active-object refinement. Processes will be implemented in terms of sequential
functions and shared data.

* Dependency refinement. The concept of data flow will be broken down into
cases: signals, message-passing through sharing, and message-passing through
copies.

The three kinds of vertical refinements will be illustrated by means of the product
vending controller in Figure 1.5. In particular, we will focus on the "validate payment"
process, including its external interface to the "get valid selection" process and its
internal implementation.

1.5.1 Explicit Specification of Horizontal Levels

We start a vertical refinement by identifying the horizontal hierarchy that is the subject
of the refinement. Therefore, we must state explicitly those modules that constitute
each horizontal level in the vending machine design. (This information appears only
textually in this document.)

The declarations

levell: LEVEL = vm-io, vending-machine, pvc, price-table-manager
level2: LEVEL = vm-io, vending-machine-impl, pvc-impl, price-table-manager-impl

specify two horizontal levels. Module vm..io does not change from one level to the
next, but the other modules do change. The suffix "_impl" is intended to indicate an
implementation module. However, this mnemonic device has no semantic significance.
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levell: LEVEL = vmio, vending-machine, pvc, pricetable.manager
level2: LEVEL = vm-io, vending-machine-impl, pvc-impl, pricetablemanager-impl

Figure 1.8: Textual Specification of Horizontal Levels

In general, the number of modules need not be the same at every level. One reason
is that macro expansions may occur at lower levels, obviating the need to represent
replaced objects. It is also possible that the basic module partitioning can vary from
level to level.

The ordering of the levels in a vertical hierarchy as well as the relationships between
levels are specified textually by means of a mapping specification. Later, we will use
a mapping specification to say that level2 is a vertical refinement of level1 and to
specify the relationship among the objects at the two levels. The ordering of modules
within a horizontal level is given by the transitive closure of the USING and REPLACE
clauses.

1.5.2 Passive-Object Refinement

We will specify the structure of the types that are in the external interface to process
"validate payment" as well as the internal data structures used in its implementation.
This will be done textually because a good visual representation of such definitions has
not been developed.

The predefined or "built-in" types are NUMBER (the rational numbers), INTEGER (the
integers), NAT (the positive integers), BOOLEAN (the values true and false), and char
(characters that may or may not be printable). Constructed types are based, directly
or indirectly, on the composition of built-in types.

The structured types in the external interface to validate payment are defined in
Figure 1.9. Here are two examples from that figure.

coin-detected: TYPE = BOOLEAN
product-id : TYPE = INTEGER [1..5]

The first declaration says that variables of type coin-detected may assume the value
true or the value false. The second declaration assumes that we have that we have
five different kinds of products. Therefore, type product.id has the integer value 1, 2,
3, 4, or 5.
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We next implement the price table as an array of integers.

price-table: TYPE = ARRAY [1..8] OF INTEGER

Arrays are functions from the index type to the element type. In this example, price-table
maps an integer in the range 1 to 8 into an integer.

vending.machineimpl: MODULE

-- structure of some internal value domains

coin-detected TYPE = BOOLEAN
product-id TYPE = INTEGER [I..5)
coin-return-status: TYPE = BOOLEAN

payment TYPE = INTEGER -- in cents
change-due TYPE = INTEGER
sufficient-payment: TYPE = BOOLEAN

END vendingmachine.impl

Figure 1.9: Textual Implementation of Vending Machine Data Structures

product-price.table-impl: MODULE
EXPORTING get-price
get-price: PROCESS [product-id -> price]

-- representation of hidden price table
price-table: TYPE = ARRAY [.-.8) OF INTEGER

END product-price-tableimpl

Figure 1.10: Textual Implementation of Price Table Data Structure

1.5.3 Active Object Refinement

We can implement the "validate payment" process in a number of ways. We will choose
an implementation that consists of three sequential functions, a shared variable, and
several dependencies that we have not seen in the previous development.

The "validate payment" process checks whether the amount paid is enough to pay
for the selected product. If it is, "validate payment" sets output "sufficient payment"
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to true and issues correct change. Otherwise, "sufficient payment" is set to false. If
"validate payment" receives a request to return the coins held by the machine, it returns
them provided the product has not already been dispensed.

validate
control id
block
2.6.1.1

T cn t on payentT pne -

payment-productent
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Figure 1.11: Implementation of Validate Payment Process

The design of the "validate payment" process is contained in Figure 1.11. The
rectangles denote functions; the rectangle with rounded edges denotes a variable; and
the underlined symbols on arrows are the names of relations. (The dataftow relation
does not appear in this diagram.) Variable id is duplicated to avoid crossed lines in
the figure. Duplication has no semantic consequences; that is, there is only one variable

called id.
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Process "validate payment" is activated by a function called "validate control block",
which is indicated by the on signal at the top of the diagram. A signal is strictly a control
relation; no data is transmitted. Process "validate control block" assigns a value to
variable "id" and activates process "receive input". Process "receive input" waits for
exactly one input; the "+" symbol on the arc denotes an n-ary exclusive-or relation.
Process "receive input" writes variable "id" and returns control to "validate control
block". The return of control is the same as for an ordinary subprogram call. Process
"validate control block" activates process "validate" which waits for two inputs, and
reads and writes the value of shared variable "id". Process "validate" produces three
outputs.

Let us now turn to the textual representation of the diagram. The input to the
"receive input" process is bundled into one type

vp-msg: TYPE = UNION(coindetected, product-id, coin.return.status)

and the signature for "receive input" is

receive-input: FUNCTION [IN vpmsg -> product-id]

A UNION operator implicitly declares its arguments as subtypes of the defined type.
The value domain of every subtype is assumed to be non-overlapping and a subset of
the defined value domain. A record structure could have been used instead of a union
type. However, that would require that callers of receive-input see the entire record
structure even though only part of it is relevant to each caller.

The remaining objects are declared as follows.

validate: FUNCTION [IN payment
-> OUT change-due, OUT sufficient-payment, OUT sufficient-payment]

validate-control-block: FUNCTION [ -> ]
id: VARIABLE product.id

The input to validate labeled "price" in the diagram is not a parameter of validate.
It is a value returned as the result of a call (as yet unspecified) by validate to the price
table manager. Function validat e-control-block has no input or output; its sole pur-
pose is to coordinate the other two functions. It writes variable id to synchronize with
validate. Variable id will not be made visible to clients of "validate payment".

Figure 1.12 contains the implementation of "validate payment". The internal wiring
in the diagram in Figure 1.11 is represented by relations pvc3-pvcl0.
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pvcimpl: MODULE [ALL]

-- implementation of wiring

pvcl: on.signal(getvalidselection, validate-payment)
pvc2: pass.message(getvalidselection, validate-payment, productid)

-- implementation of validate-payment and its external interface

validate-payment: PROCESS
EXPORTING receiveinput, validate, vp.msg

-- external interface

vp.msg: TYPE = UNION(coin-detected, product.id, coin.return.status)

receive-input: FUNCTION [IN vp.msg -" product.id]
validate: FUNCTION [IN price, IN payment

-> OUT change-due, OUT sufficient-payment, OUT sufficient-payment]

-- local objects

validate-control-block: FUNCTION [ -> ] -- internal activation block
id: VARIABLE productid -- local variable

-- internal wiring

pvc3: write(validate-control-block,id)
pvc4: onsignal(validate-control-block, receive-input)
pvc5: writes(receive.input,id)
pvc6: return.sigal(receive-input,validate.control-signal)
pvc7: onsignal(validate-control-block, validate)
pvc8: reads(validate, id)
pvc9: writes(validate, id)
pvclO:return.signal(validate, validate.controlblock)

END validate-payment

-- similar implementation for getvalid-selection goes here

END vendingmachine-impl

Figure 1.12: Textual Implementation of Validate Payment Process and Its Wiring
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1.5.4 Dependency Refinement

Having completed the internal design of process "validate payment", we are ready to
consider its interface to process "get valid selection". Specifically, we will consider the
manner in which the product id is transmitted.

In Figure 1.13 we can see that the dataflow arrow labeled "product id" has been
split into two different kinds of arrows. The two arrows reflect the fact that data is
transmitted in two steps. First, a wake-up signal is sent from "get valid selection" to
"validate payment". Then, a value of type "product id" is sent as a message. More
precisely, we have

on-signal(get-valid-selection, validate-payment)
pass-message(get-valid-selection, validate-payment, product-id)

labeled as pvcl and pvc2 in the figure. This is an example of a dependency refinement.
For it to be legal, PegaSys must prove that it is consistent with the meaning of the
df low relation.

1.6 Mapping Between Vertical Levels

A mapping describes how to interpret an abstract system description in terms of a more
concrete one. In particular, we must place every object at the abstract level in one-
to-one or in one-to-many correspondence with objects at the lower level. For example,
in the context diagram in Figure 1.2, we must have a mapping for types coin, slug,
object, selection, coin-return.request, products, and product-status as well as
for processes source and sink. We do not need a mapping for process vending-product
unless we want to duplicate it at the lower level. (Process vending-product was a
replaceable process.)

In the specification of a mapping, associations can be omitted if the source and
target names are the same. With respect to such a mapping, PegaSys must prove that
the concrete level implements the more abstract level.

The intended associations for our example are shown in Figure 1.14. The maplto2
module begins with a MAPPING clause that indicates that it is a mapping module that
provides an interpretation of levell in terms of level2. Instead of describing objects
and their dependencies, a mapping module lists associations such as

vs -> pvcl, pvc2
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Figure 1. 13: Implementation of df low Relation
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which says that the relation labeled vs in levell is to be interpreted by target relations
pvcl and pvc2 from level2. The other associations in the mapping module reflect
differences in the two levels. The structured types at level2, except for payment, are
not associated with types from levell because their names are the same at both levels.

maplto2: MODULE

MAPPING levell ONTO level2

-> price-table -- new object

validate-payment -> validate-controlblock, -- process implementation
receive-input,
validate

current-payment -> payment -- renaming

validate-payment: PROCESS
[IN current-payment, IN coin-detected, IN coin-return-status,
product-id, price
-> OUT change-due, OUT sufficient-payment, OUT sufficient-payment, product-id]

validate-payment: PROCESS [IN vp.msg, IN payment, product-id, price
-> OUT change-due, OUT sufficient-payment, sufficient-payment, product-id]

vs -> pvcl, pvc2 -- dflow implementation

END mappinglto2

Figure 1.14: Mapping Module Connecting Vending-Machine Levels

1.7 Predefined and User-Defined Concepts

We have already discussed the primitive types: NUMBER, INTEGER, NAT, and BOOLEAN.
Type NAT is a subtype of INTEGER and INTEGER is a subtype of NUMBER. The subtype
relation is the transitive closure of the subtype declarations. A subtype can be coerced
into the type of its parent type(s). We have types FUNCTION, MODULE, PROCESS,
TYPE, and VARIABLE for typing basic objects.

The nine primitive relations are contained in Figure 1.15. The primitives can appear



1.7. Predefined and User-Defined Concepts 25

in specifications. They also can be used to define derived relations. The df low relation
used in our example was not a primitive. It is defined as follows.

dflow: FUNCTION [PROCESS, PROCESS, TYPE -> BOOLEAN]
dflow(x,y,z) = dataflow(x,y,z)

The signature says that dflow is applies to two processes and a type. The df low
relation is intended to be true provided the first process passes values of the specified
type to the second process. The second equation defines df low in terms of primitive
dataf low. The dataf low relation is a more general form of data dependency. The
dflow2 relation is defined in the figure to apply only to sequential objects.

To see how these definitions work, consider the following simple example in which
we implement a pure dataflow model by a sequential dataflow model. Let Li be the
horizontal level defined by

i : integer
A : PROCESS [-> INTEGER I
B : PROCESS [ INTEGER -> J
p : dflow(A, B, i)

To simplify the example, we omit the surrounding module. Let L2 be the horizontal
level defined by

j : integer
C : FUNCTION [-> INTEGER I
D : FUNCTION [ INTEGER -> ]
s : dflow2(C, D, i)

and let

i -> J
A -> C

B -> D

be a mapping M from Li onto L2. We can prove

M F L2 D L1

using the definitions of df low and dflow2, since both are defined in terms of the common
base relation dataf low. Therefore, L2 implements Li under the given mapping.
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dependencies: MODULE
-- this module implicitly imported into all other modules

-- type definitions

active-object: TYPE = MODULE I PROCESS I FUNCTION
seqobject : TYPE = MODULE I FUNCTION
passive-object: TYPE = VARIABLE I TYPE I id: TYPE

-- primitives

dataflow: FUNCTION [active-object, active-object, passive-object -> BOOLEAN]
on-signal: FUNCTION [PROCESS, PROCESS -- > BOOLEAN]
off-signal: FUNCTION [PROCESS, PROCESS -- > BOOLEAN]
return-signal: FUNCTION [PROCESS, PROCESS --> BOOLEAN]
pass-message: FUNCTION [PROCESS, PROCESS, TYPE -> BOOLEAN]
writes: [active-object, VARIABLE -- > BOOLEAN]
reads: [activeobject, VARIABLE -- > BOOLEAN]
calls: [FUNCTION, FUNCTION, passive-object -> BOOLEAN]
iflow: FUNCTION [active-object, active-object, passive-object -> BOOLEAN]

-- derived dependencies

dflow: FUNCTION [PROCESS, PROCESS, TYPE -> BOOLEAN]
dflow(x,y,z) = dataflow(x,y,z)

dflow2: FUNCTION [seqobject, seqobject, passive-object -> BOOLEAN]
dflow2(x,y,z) = dataflow(x,y,z)

END dependencies

Figure 1.15: Dependency Relations Used in the Example
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It is important to note that the PegaSys methodology does not depend on a particu-
lar set of primitives or derived relations. The relations used for a particular development,
however, must be specified in the standard module called dependencies. In general,
it is probably best to encapsulate the primitive relations in a separate module, and
then import that module into the dependencies module that defines the new relations
tailored to the application.



Chapter 2

Tracking the Effects of Program
Changes

2.1 Introduction

For large systems, it often is too difficult to predict the semantic effects of planned
changes. The problem is inherently difficult, even for well-structured systems. But, in
practice, it is nearly impossible because of "fine tuning" that tends to convolute the
structural abstractions of the system.

Conventional formal methods offer little help. The question of whether a change to a
program affects a certain system object boils down to determining whether a formula in
the specification language is a theorem, This reduction would take place in a Hoare logic
involving pre- and post-conditions, as well as in a logic based on the equivalence of func-
tions. Unfortunately, the expressive behavioral specification languages are undecidable
and some are incomplete. They also have insufficient mechanical theorem-proving sup-
port. Consequently, any approach based on a behavioral specification language would
tend to be impractical for everyday use.

To obtain a practical solution, we make a sharp distinction between the kind of
property to be analyzed and the kind of method used to analyze it. In particular, we
reason about the semantic effects of changes through a structural analysis of a program.
We believe that the right structural abstraction for capturing the "effects" relation
between system objects is that of "information flow." Intuitively, information flows
from an object x to an object y if, when the program is executed, a change in the
value associated with x can change the value associated with y. This is a qualitative

28
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question in that we are only interested in whether any information flows from one object
to another, not the amount of information that flows. For system objects z and y, a
change to x is said to affect y provided the pair (x, y) is in the closure of the information-
flow relation with respect to a set of special transitivity axioms. The axioms do not
include the usual transitivity rule. If there is flow from x to y and from y to z, there is
not necessarily flow from x to z.

We define a logic for approximating the direct and indirect information flows in a
large program. Each construct in a programming language is described declaratively by
rule of inference. Each rule is syntax-directed in that its application is driven by the ab-
stract syntax of the programming language. The programming features covered include
parameterized modules, procedures, global variables, functions without side effects, re-
cursion, and various statements, such as assignment, while loop, and conditional. The
entire logical system is concise and comprehensible.

Our formalization has three important characteristics that increase its practical-util-
ity. First, our logic is decidable, obviating the problems associated with semantic ap-
proaches. Decidability is achieved in part because we do not require formal, detailed
specifications. Since programs are often constructed without any specification, this de-
cision has the additional benefit of making our method more widely applicable. Second,
our logic is declarative and therefore new constructs can be handled simply by adding
more rules. Third, the implementation of our logic facilitates the interpretation of re-
sults. In particular, proofs are saved in a comprehensible form that makes explicit the
justifications for each pair in a closure. Justifications are particularly useful in examin-
ing an approximation that is believed to be too inexact.

Because our logic is approximate and conservative, it has the logical property that
it is complete but not sound. Let I denote the set of true information flows in a given
program and let A denote our approximate inference system. In addition, let x ==* y
indicate that there is information flow from object x to object y, where an object is a
module, procedure, function, or variable. Then, we have

if = x == y then A x==* y

but the converse is false. Of course, the converse is desirable in classical logic, but, for
our application, completeness is the crucial property. An overestimate (completeness
and unsoundness) will not cause us to overlook an object affected by a change, but it
may point to objects that are not relevant.

Another nice property of our axiomatization A is that failure to derive a flow means
that the flow definitely does not occur. That is,

if V/A x = y then 7 x == y
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which is just the contrapositive of the completeness property above.

The remainder of the chapter is organized as follows. The next section compares our
work to related work involving the semantic and structural analysis of programs. Section
3 presents the abstract syntax for the language discussed in the body of the chapter.
Section 4 gives a mathematical definition of information flow, illustrates its intransitivity,
and defines rules for computing transitive flows across statements, including procedure
calls. Section 5 introduces a logical method for referring to values of variables at specific
program points. Section 6 shows how to state questions about changes and presents
computer-generated analyses that answer positive and negative questions. The questions
involve various program objects, including variables, procedures, and modules. Section
7 shows that changes are analyzed in polynomial time. Section 8 discusses modules and
sketches how to handle a subtle example. Section 9 concludes with a brief summary of
our results.

An earlier paper [24] presented similar results in a different logical framework. The
main improvements are logical simplicity and uniformity, reduced execution costs, and
the provision of meaningful justifications.

2.2 Related Work

2.2.1 Semantic Approaches

In 1972 Floyd [11] described an imagined interaction between a computer programmer
and a formal program verification system that he believed might be feasible within the
next decade. One of the main ideas in the scenario was for the computer to carry the
burden of maintaining the consistency of specifications, programs, and lemmas following
incremental changes. In 1978 Moriconi [231 developed and implemented a technique
for this purpose based on a Hoare-style axiomatization of the programming language
semantics. Most verification systems, past and present, are based at least implicitly on
Hoare logic [18].

A proof of a program in Hoare logic is a sequence of steps, where each step is an
instance of a Hoare axiom, a Hoare sentence derived from a previous step by a rule of
inference, or a theorem in the underlying logic. Maintaining consistency in the presence
of change boils down to determining theoremhood in the underlying theory (which is
no easier than determining functional correctness). The underlying logic is determined
by the specification language. The existing languages that we are familiar with are
undecidable and, moreover, there typically is insufficient theorem proving power to
handle the formulas that arise in practice. The undecidable specification languages
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include Anna [20, 21], EH DM [5], Gypsy [14], Larch [15, 16], OBJ [12, 13], VDM [3], and
Z [17].

Perry [25, 26] recently suggested a similar approach based on Hoare logic for ex-
tending configuration management systems. He attempts to simplify matters by using
the subset relation instead of logical implication to relate assertions. This translitera-
tion works if the specifications are properly encoded in set theory. But the encoding
offers no apparent gain, since the formulas to be proved are no simpler than before.
Truth maintenance systems (e.g., [7, 10]) provide a different way of thinking about the
problem, but we are still left with the intractable problem of testing for theoremhood.

2.2.2 Structural Approaches

Qualitative information flow has been studied extensively in the field of computer secu-
rity by Denning [8] and others.1 A program's security can be certified at compile-time
through a conservative intr-pretation of the information-flow relation. A variety of for-
malisms have been used tor this purpose, including attribute grammars [9] and logical
rules [1]. Represe-;.- .ve security analysis tools are those of McHugh and Good [22] and
Rushby [29]. Work in computer security combines information flow considerations with
security considerations. Moreover, the transitive information flows of interest here are
not computed explicitly.

Bergeretti and Carr6 [2] use the concept of information flow in program development
to detect certain kinds of errors and anomalies. Their work is more limited than ours in
that it is oriented towards intraprocedural flows, although they do present preliminary
ideas for procedures without recursion, without globals, and with very conservative
assumptions about parameters. They adopt a relational approach for computing all
possible facts, many of which may not be relevant to the specific change. Their relational
approach does not address the problem of providing flow justifications. Our logical
approach supports the derivation of specific results justified explicitly by formal proofs.
We describe how to use the results of an analysis to reason about large-grain program
objects, not just variables.

The information flow relation can be interpreted within a classical program flow-
analysis framework. Only a crude interpretation can be provided using coarse-grain
relations, such as the "calls" relation between procedures or the "uses" relation be-
tween modules. It appears that def/use chains could be put together across procedure
boundaries to yield an interpretation equivalent to the one given in this chapter. (A

'Classical information theory, developed by Shannon [30] and others, is concerned with the amount
of information generated by a particular event. We are interested in the simpler question of whether
any information is generated by an event.
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def/use chain represents the set of uses u of a variable x from a point p such that there is
a path from p to u that does not redefine x.) Intraprocedural def/use chains have been
used by Podgurski and Clarke [281 in defining a general notion of variable dependence
that seems to be equivalent to intraprocedural information flow.

Our logical approach has a number of advantages over a graph-based flow-analysis
framework that stem from differences in objectives. This report focuses on the abstract
information-flow relation, the specification and prototyping of an analysis technique,
and on the explication of analysis results. In contrast, program flow analysis has been
studied primarily for use in optimizing compilers or other settings in which low-level
relations and efficiency are of primary importance. In fact, our inference system can
be viewed as a specification for a def/use implementation of the closure. Our logic can
directly provide flow justifications, which would require a significant extension to a flow
analysis implementation.

Recent work by Horwitz, Reps, and Binkley [19] is somewhat related. They describe
a complex but efficient flow-analysis algorithm for computing program slices, a concept
originally introduced by Weiser [31]. A slice is the set of all statements and predicates
of a program that affect a variable at a given point. The computation of a slice inher-
ently has a backward orientation, whereas tracking the effects of changes has a forward
orientation. However, the assertions computed by our rules can be used to determine
slices.

2.3 Abstract Syntax

We begin by focusing on programs that consist of a collection of (global) variables,
functions, and procedures. Procedures can refer to global variables; functions always
behave as pure mathematical functions. Parameters of procedures have a value-result
semantics (copy-in/copy-out). Three kinds of statements are treated: assignment, a
looping construct, and conditional.

Our logic does not depend on the concrete syntax of a particular programming
language. Instead, it refers to an abstract syntax containing the features just described.
The abstract syntax is defined in functional notation, specifically a many-sorted logic
with subsorts. For example, the subsort declaration Var C Expr means that every
variable is an expression. Operators are defined in a mixfix syntax in which an underbar
is a placeholder indicating where arguments should appear. This notation is borrowed
from OBJ [131.

The abstract syntax for programs (without modules) is contained in Figure 2.1. To
simplify the discussion, we assume that procedures, functions, and globals have unique
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names. In addition, locals of different procedures are distinct.

The discussion does not include structured objects and expressions with side effects,
although we believe that our logic could be adapted to analyze them. Pointers and
call-by-reference parameters can be added, but not as easily. Types are omitted from
the abstract syntax because they are not used in the analysis.

2.4 Definition of Information Flow for Statements

2.4.1 Notation

We consistently use certain variables to range over particular classes of objects. The
metavariable c ranges over constants of sort Const. Letters u, v, x, y, and z are
metavariables ranging over variables and constants in the language. We letprimop ranges
over the primitive operators of the language (i.e., those that are not user defined), e,
ti (i > 0), and b (for boolean) range over expression instances, and S and Si range
over statement instances. The letters f and p range over the names of functions and
procedures, whose parameters are of kind ki. Finally, the letter C denotes a context in
which a particular analysis takes place. These naming conventions are summarized in
Figure 2.2.

The predicates in Figure 2.3 will be used in defining information flow for the con-
structs in the abstract syntax. Two predicates are needed for statements, one for assert-
ing flows across the statement and another for asserting which variables are modified
directly or indirectly by the statement. Information can flow into an expression, so a
predicate is needed to describe such flows. Interprocedural flow assertions model the
variable bindings that result from a procedure call. The relation =='jf denotes a flow
from an actual to a formal and ==*b denotes a formal to actual flow. The relations
apply to implicit parameters, i.e., globals.

The context C is used in assertions to denote collected assumptions about the entities
in a program. The term "context" as used here is equivalent to the term "environment"
in denotational semantics. A context is a pair in which the first element is the set of
global variables and the second is a mapping from procedure or function names to their
descriptions. Specifically,

Context = Globals x (Name -- Kind x ParamList x Stint)

where the sort Globals is a set of variables and Kind indicates whether the name is that
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sorts
Const Expr ExprList Name Param
ParamKind ParamList Prim~p
Program Stint Unit Var

subsorts
Var, Const C Expr
Prim~p g Name
Unit C Program

operators
ExprList = List[Expr]

4 :Name ExprList -~ Expr

- := Var Expr - Strnt

4:Name ExprList -~Stint

if - then - else -fi :Expr Stmnt Stint -Stint

while - do - od: Expr Stint -~ Stint
null: - Stint

-;-Stint Stint - Stint

value,value-result,result:- ParainKind
- - : ParainKind Var - Parain
ParainList =List[Param]

var-. : Var -*Unit

procedure 4...: Name ParainList Stint - Unit
function -(-)- Name ParainList Stint --+ Unit
- - : Unit Program - Program

Figure 2.1: Abstract syntax (without modules).
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Notation Sort
c Const
u,v,x,y,z Var or Const
primop PrimOp
e, ti, b Expr
S, Si Stint
f, p Name
ki ParamKind
C Context

Figure 2.2: Summary of Naming Conventions

of a procedure or function. The mapping also specifies the parameter list and body of
the named entity.

Inference rules are used to axiomatize the basic information-flow predicates in Fig-
ure 2.3. Inference rules describe how assertions can be derived. An inference rule of the
form

P]...P
C

states that conclusion C can be inferred from the premises Pi. Each Pi and C is an
instance of a predicate in Figure 2.3. If a rule has no premises, we write it without the
horizontal bar. The rules are syntax-directed; at least one axiom or rule is given for
each construct in the abstract syntax. The context referred to in an assertion can be
derived from a program. We have implemented a program analyzer in Common Lisp
that directly applies the rules given below to compute assertions.

The style of our inference rules is inspired by Plotkin's "structural operational se-
mantics" [27]. This style of formalism is intended to produce concise, comprehensible
definitions that are independent of internal representation details. The formalism has
been used as a common framework for specifying, among other things, type checking,
type inference, tra.nslation, and interpretation [4], and it is becoming a popular notation
for language-directed specifications.

2.4.2 Mathematical Definition of Information Flow Predicates

The meaning of information flow can be illustrated with a few simple examples. Ex-
ecution of the assignment statement x: =y causes flow from y to x. Execution of the
conditional
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Notation Interpretation (with respect to context C)
C > [S] x = y the value of x before execution of S affects

the value of y after execution of S
C I> [S] mod x execution of statement S may modify the value of variable x
C L> x ==* val(e) the value of x affects the value of expression e
C L> [S] x ==*f y intersubprogram forward flow from formal x to actual y for call S
C 1> [SI x ==b Y interprocedural backward flow from actual x to formal y for call S
C L> global(x) x is a global variable
C I> value(p, i) the ith formal parameter of procedure p is a value parameter
C L> result (p, i) the ith formal parameter of procedure p is a result parameter
C L> param(p, i, x) the ith formal parameter of procedure p is x
C t> func(p, S) p is a function with body S
C r> proc(p, S) p is a procedure with body S

Figure 2.3: Summary of Predicates Used in Inference Rules

if x=O then y:=O else y:=l

causes a flow from x to y. A procedure call initiates a set of flows that reflect the
actual/formal parameter bindings.

Before defining information flow, we introduce some sorts and functions. Let the
sort Val denote the values of variables. The sort Env consists of mappings from variable
names to values. The operations val and set retrieve and set the value, respectively,
of a variable in an environment. The function eval evaluates an expression in a given
environment and context; expressions have no side-effects. Function exec executes a
statement in a given environment and context, and produces a new environment. Non-
terminating execution produces the value "undefined." The signature for the operations
is given below.

sorts Val Envoperators val : Var Env -- Val set : Var Val Env --

Env eval : Expr Env Context --* Val exec : Stmt Env Context --

Env

We now make the following mathematical definitions:

C t4]"x y iff -env: Env, v: Val[val(y, exec(S, env, C)) $ val(y, exec(S, set(x, v, env), C))]

C t> x =. val(e) iff 3env: Env, v: Val[eval(e, env, C) 5 eval(t, set(x, v, env),C)]
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C [>[S]modx iff 3env:Env[val(x,env) 5 val(x,exec(S, env, C))]

These are the exact mathematical definitions of the first three predicates in Figure 2.3.

The first definition says that there is flow from x to y provided the value of y after
execution of S differs when only the value of x is changed in the initial environment
env. The second definition says that there is a flow from x to expression e if the value of
e differs when only the value of x is changed. The third definition says that S modifies
x provided the value of x after execution of S can be different from its value before.

Our inference rules approximate the mathematical definitions. We do not include
the rules for defining the mod relation. They are straightforward and give a relatively
exact interprocedural version of the "modifies" relation commonly used for program
optimization [6].

The fact that the information flow relation is not transitive in the usual sense is
illustrated by the example below.

Example 1 (Intransitivity of information flow) Consider the following program frag-
ment:

procedure addinc(value-result sum, value-result i);
add(sum,i); inc(i)

procedure add(value-result a, value-result b);
a := a+b

procedure inc(value-result z);
add(z,l)

Suppose that we want to know whether a change to the value of variable sum can
affect the value of variable z. The call to add in addinc gives a flow from sum to a and
the call from inc to add gives a backward flow from a to z. Hence, a flow from sum to
z is in the transitive closure. But there is no execution sequence for which the value of
sum affects z. The problem, of course, is that transitive flows are determined in part by
the flow of control. For procedures, the interplay between control and information flow
can be complex. 0

2.4.3 Approximate Logic for Statements

Any constant or variable that appears in an expression affects the value of the expression.
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expr-var
C L> x = val(x) x: Var

expr-const
C > c =* val(c)

expr C t> x ==* val(ti)i=1,.n
C t> x ==* val(primop(tj,...tn)) zn

The first rule says that any change in the value of x affects the value of x. The second
one says that a constant affects its value. Strictly speaking, a constant cannot change,
so there can be no information flow from a constant to something else. We include this
rule because the programmer may edit a constant in a program, in which case we may
want to see what depends on the constant. The third rule says that an change that
affects any component of an expression affects the value of the expression. The sort
PrimOp denotes built-in functions; user-defined functions are handled differently.

Anything that affects the value of the righthand side of an assignment affects the
value of the variable on the lefthand side.

C > x =* val(e)
C >[y:= e] X => y

It also is necessary to specify invariants over assignments. In particular, if an assignment
does not modify some variable (i.e., the variable does not appear on the lefthand side),
then the value of the variable before the assignment is said to affect its value afterwards.

not-mod
-'(C t>[S] mod x)
C > [S] X => x

where, in practice, S can be restricted to be an assignment, the null statement, or a
procedirre call. Note that constants are always invariant across statements.

Sta ;ement composition is handled by the following rule:



2.4. Definition of Information Flow for Statements 39

seq
Ct>[S1]x= *Y Ct>[S2]y== 'z

C t [S; S2] x =* z

Two flows are composed when the intermediate variable is the same and the two state-
ments appear in sequence. In the absence of the not-mod rule, the composition rule
could not be applied when one statement in a sequence does not modify a variable
modified by another statement in the sequence.

Conditional statements are broken into two cases. The first deals with the flows on
the two branches of the if-then-else. The second deals with the flow from the condition
through the branches.

if
Ct[Si]x==y i=1 or i=2

C > [if b then S1 else S2 fi] x ==* Y

if-cond
CL> x == val(b) (CL>[S1]modyVCt>[S 2]mody)

C L> [if b then S1 else S 2 fi] x ==* y

The first rule says that the flows created by the statements in the branches are created
by the conditional statement as a whole. The first premise of the second rule says that
a variable x can affect the choice of the branch. The second premise says that variable
y is affected by one of the branches. In this situation, x indirectly affects y. This rule
does not take into account the fact that y could have the same value on both branches.

The while rules deal with three possibilities.

while-null

C t> [while b do S od] x * x

while
C t> [while b do Sod] x ==* y C t>[S] y =* z

C t> [while b do S od] x == z
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while-cond

CL>[whilebdoSod] x = y C > y = val(b) C >[S]modz
C > [while b do S od] x ==. z

The first rule handles the situation in which the body S of the while loop is never
executed. This means that the effect of the statement is exactly the same as the null
statement. The second rule is recursive. If a flow from x to y is created by the while
statement and a flow from y to z is created by the body S of the while statement,
then the two flows can be composed. The third rule also is recursive, indicating that a
transitive flow occurs when y affects condition C. The condition governs whether S is
executed and therefore affects any variable modified by S.

We next deal with parameter passing in functions and procedures. Before stating
the function and procedure rules, we first introduce rules for parameter passing. The
first two rules deal with the transmission of values from a call site and the last two deal
with return values. Globals and constants are implicit parameters at every call site.
They are transmitted by the rule

C > global(x) V x: Const
c t> [p(ti,...t")] X ==* f

which asserts that the value of a global or constant at the call site is the same as the
value when the called procedure is entered. The rule

C > value(p, i) C > param(p, i, x) C > u == val(ti)
C t> [hti,...-, tn)] U ==* f

asserts that a flow from a variable u into an actual parameter ti is transmitted to the cor-
responding formal value parameter zi. Globals are returned to themselves, analogously
to the forward transmission of globals.

C t> global(x)
C C> [A~tl,... -, tn)] X ==b X

Result parameters of procedures are transmitted back to the actual parameter.

C > result(p, i) C L> param(p, i, x) t,: Var n
c >, [P(t, .. ., to)] X ==b ti
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The first two premises assert that x is the i-th parameter of procedure p and x is also a
result parameter. The third premise requires that ti be a variable; from the conclusion,
t, must be an actual parameter in the call to p. Under these conditions, we can conclude
that the call to p results in a backward flow from formal x to actual ti.

We can now define the information-flow semantics of function and procedure calls.
The rule for function calls is

func (expression)

C t> func(f, S) C L> [f(tl,...,t,)J u =*. x C L>[S] x => value
C L> u =: val(f(tl,. .. , t,))

The first premise checks that f is a function and S is its body. The second premise
asserts that the call to f causes a forward flow from u to x; by the parameter passing
rules, u and x are the same constant, the same global, or describe a flow from an actual
to a formal. The last premise asserts that there is flow from x to the special program
variable called value, which is used to indicate the return value of a function. The
conclusion says that the value of u affects the value of the call.

The procedure call rule is complicated by the possibility of multiple backward flows.
The idea behind the rule is that a forward flow into a procedure can be passed through
the procedure through transitive local flows and then back to the caller via a backwards
flow.

proc (statement)
C t> proc(p, S) C L> [p(tl,..., t,)] u =>f: x C t> [S] x == y C t> [P(ti,, W,) Y ==> b V

C t> [(tl, .. . , tI) ] u/ =>

The first premise asserts that p is a procedure and S is its body. The second premise
asserts that the call to p results in a forward flow from u to x. The third says that there
is a local flow from x to y. The last requires a backward return flow from y to v. From
these four conditions, we can infer that the call to p has the net effect of causing a flow
from u to v.

2.5 Variables at Program Points

The assertions in Figure 2.3 involve variables that denote values before and after a given
program statement. They do not allow us to make assertions that relate variables at two
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arbitrary points in a program. In addition, we cannot ask whether a change to a local
variable of a given procedure can affect the value of a local of another procedure, since
the locals are in different scopes. To provide this capability, we provide a mechanism
for introducing names, which have global scope, for the values of variables at specific
points in a program. The new names are called label variables of sort Label Var (a subsort
of Var). For the purposes of this report, a variable ending in "0" is a label variable,
otherwise it is an ordinary variable. One way to introduce label variables involves
modifying the program; another requires no modification but involves new inference
rules. Both approaches are presented below.

For a given variable and point, we may be interested in tracing flows forward, back-
ward, or both. To trace forward from a point between two statements, we insert the
assignment x:=exp(x,xo) where x is the variable of interest and x0 is a new unique
global. Primitive operator exp has the property that its value depends on x and xO.
This follows from a direct application of the expression rule (expr). To trace backward,
we insert xo:=exp(xxo) and both are needed to trace both directions. An example is
given in the next section.

Although this approach is simple, it is unattractive in the sense that we must modify
the program. This is particularly serious if we are interested in a large number of
program points. Fortunately, modification of a program is not necessary, as we can
introduce label variables during the inference process. For this purpose, we introduce
the following rules.

C t> [S] x Y
C t>[S] 1 Y

C t> [S] X =€- y
C r>[S] X I

C L> I == val(e)

where I is a label variable. It is necessary to record the association among label variable,
the renamed ordinary variable, and the statement or expression in order to properly
interpret results of an analysis. For example, in the first rule, 1 represents the value of
x before execution of statement S. Renamings must be complete and uniform for this
approach to be equivalent to the previous one that introduced assignments.

Label variables have two important properties. The first is that they are treated as
globals by the parameter passing rules, allowing them to be moved from scope to scope.
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Notation Interpretation (with respect to context C)
C C> orig(l, x) x is the variable associated with label variable I
C t> varof(x, p) x is a variable referenced in procedure or function p
C t> sub(p, S) p is a procedure or function with body S
C t> subof(p, M) procedure or function p is in module M

Figure 2.4: Summary of Predicates Used in Questions

Second, there is always a flow from a label variable to itself across all statements. That
is,

C > [S] I == I

This is guaranteed in the first approach by the choice of assignments and in the second
because no assignments to I can exist. This fact is used to propagate labeled flows
through statement sequences.

2.6 Deducing the Effects of Program Changes

We want to ask questions about changes to a number of different kinds of objects:
variables (including globals), procedures, functions, and parameterless modules. Ques-
tions involving large-grain objects are reduced to questions involving only our assertions
about statements, possibly involving label variables. For example, a change to variable
v affects module M provided v flows into a variable associated with M. In general, the
questions of interest have the following pattern: Does a change to object X affect object
Y?

A query can be any first-order formula with finite quantification. This means that
we can quantify over the objects in a program, such as its modules or procedures. An
analysis of the program (using the inference rules of the previous sections) produces
all of the ground (variable-free) facts about the program. These facts are positive and
facts not in this set are assumed to be false. First-order queries are defined recursively
in terms of the ground facts. For a specific program, sorts are interpreted with respect
to the objects in the current program. For example, x: Var indicates that x ranges
over the finite set of variables in the current program, not the countably infinite set of
variables that could occur in a program. Formulas in this section will make use of four
new relations, which are summarized in Figure 2.4.

We will find it convenient to have notation for asserting that execution of a procedure
or function creates a certain flow. For a name P, we have
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C t>[P] x = y iff (3S)[C > sub(P, S) A C > [S] x == y]

This says that there is a flow from x to y for P if and only if P is a procedure or function
subprogram in context C and there is a flow from x to y in its body S.

Example 2 (Absence of an interprocedural flow) Consider the following program

procedure addinc(value-result sum, value-result i);
add(sum,i); inc(i)

procedure add(value-result a, value-result b);
a := a+b

procedure inc(value-result z);
add(z,1)

Our implementation of the inference rules produces the following assertions for the body
of addinc.

0: [add(sum,i); inc(i)]i=>sum
1: Eadd(sum,i); inc(i)]sum=>sum

2: [add(sum,i); inc(i)]i=>i
3: [add(sum,i); inc(i)=1>i
4: [add(sum,i); inc(i)]1>l

Suppose that we are interested in whether the value of sum on entry to addinc affects
the value of i on exit. Formally, we want to know whether C E> [addinc] sum == i
and it is easy to see that it is false. Note that there is no need for label variables in
this example, since the basic assertion deals with before and after values for addinc.
Because approximations are conservative, we know that there really is no flow from sum
to i. 0

Example 3 (Presence of an interprecedural flow) Suppose that we are interested in
whether the value of i before the call to inc affects the value of a on entry to add. To
answer this question, we introduce label variables io and aO.
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var iO, aO;

procedure addinc(value-result sum, value-result i);
add(sum,i); i := exp(i,iO); inc(i)

procedure add(value-result a, value-result b);
aO := exp(a,aO); a := a+b

procedure inc(value-result z);
add(z,1)

The new assignment in addinc associates iO with the value of i before the call to inc.
The one in add associates the value of a upon entry with ao. The assignments have a
different form because iO is to be propagated forward and ao backward.

We want to find a procedure P in our program such that C L> [P] iO aO. Of the
ground facts generated by the computer, here are the ones for addinc.

0: [...]iO=>iO
1: [...]iO=>aO
2: [...]iO=>i
3: [...i=>aO
4: [...i=>i
5: [...]aO=>aO
6: [...]sum=>aO
7: [...sum=>sum
8: [...i=>sum
9: [.. =>i
10: [...]1=>1

Ellipses denote the body of addinc.

We can see that the second assertion validates the desired flow, i.e., it proves C t>
[addinc] iO =* aO. Since this is a positive assertion, there is no guarantee that the flow
actually occurs. Below is a formal machine-generated proof that validates this assertion.

Proof of [add(sum,i); i := exp(i,iO); inc(i)]i0=>aO

(1) [add(sum,i)]iO=>iO - not-mod iO

Also proc[add(sum,i)]iO =>f iO [aO := exp(a,aO); a := a+bj. i0=>i0
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=>b iO
(2) iO=>[iO] - expr-var

(3) iO=>[exp(i,iO)] - expr[2] (2)
(4) [i := exp(iiO)]iO=>i - := (3)
(5) [add(sum,i); i := exp(i,iO)]iO=>i

- seq (1) (4)

(6) [inc(i)]i =>f z - =>f[1]
(7) [add(z,1)]z =>f a - =>f[l]
(8) a=>[a] - expr-var
(9) a=>[exp(aaO)1 - expr[l] (8)
(10) [aO := exp(a,aO)]a=>aO - := (9)
(11) [a a+b]aO=>aO - not-mod aO
(12) [aO exp(a,aO); a := a+b]a=>aO - seq (10) (11)
(13) [add(z,l)]z=>aO - proc[l->] (7) z =>f a (12) aO =>b aO
(14) [inc(i)]i=>aO - proc[1->] (6) i =>f z (13) aO =>b aO
(15) [add(sum,i); i := exp(i,iO); inc(i)iO=>aO

- seq (5) (14)

The justifications are keyed to the labels on the rules. The proof shows how the flow from
iO to aO actually occurs, including the relevant control path. Steps (1)-(5) establish
that iO, starting at the new assignment in addinc, flows into the value of i immediately
before the call to inc. Steps (8)-(12) verify that there is a flow from the value of a on
entry to add to the point associated with aO. Steps (7) and (13) are assertions about
the body of inc, verifying an interprocedural flow from formal z of inc to aO. Steps (6)
and (14) verify that the call to inc creates a flow from i to aO. The last step composes
the assertions at (5) and (14) creating the desired flow for the body of addinc. 0

We now consider more general questions. In the formulas below, free variables in
formulas can be instantiated to form a specific question. For simplicity, we assume
that label variables have been introduced for every variable at every program point. (In
practice, the number of label variables can be reduced based on the particular question.)

Example 4 (Effect on a variable) Suppose that we are interested in whether a change
to a variable x affects a variable y. The formula

(3P: Name)(3u, v: LabelVar)[C t> orig(u, x)) A C I> orig(v, y) A C > [P] u * v],

where x and y are free, says that a change to a variable x can affect the value of a
variable y if a change to a label variable u associated with x can affect a label variable
v associated with y when some procedure P is executed.
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Our earlier question about whether sum affects i can be stated as an instance of
this formula. Substituting sum for x and i for y, we obtain

(3P: Name)(3u, v: LabelVar)[C L> orig(u, sum) A C [> orig(v, i) A C > [P] u v],

We did not use label variables before, but this formulation is equivalent. 0

Example 5 (Effect on a procedure) To ask whether a change to a variable x affects an
arbitrary procedure P, we use the defining formula

(3R: Name)(3u, v: LabelVar)(3y: Var)[Ct>orig(u, x)ACL>orig(v, y)ACt>varof(y, P)AC>[R]u == v],

where x and P are free. Observe that R can be any procedure, including P. It will be
different from P when the procedure that owns x is not called, directly or indirectly, by
P.

If instead we are interested in whether the value of x at a certain point affects a
procedure P, we would would use the formula

(3R: Name)(3v: LabelVar)(3y: Var)[C 1> orig(v, y) A C L> varof(y, P) A C t>[R] u =* v],

where u is free and to be instantiated with the label variable for x at the point of
interest. 0

Example 6 (Effect on a module) A change to a variable x can affect module M if the
change affects a procedure contained in M. That is, we must prove an instance of

(3P, R: Proc)(3u, v: LabelVar)(3y: Var)[C L> orig(u, x) A C L> orig(v, y) A
C i> varof(y, P) A C t> subof(P, M) A C t> [R] u ==* v].

where x and M are free. 0

2.7 Complexity

The time complexity of our inference algorithm is linear in the size of the program and
polynomial with respect to the total number of variables and constants. For a large
program, the size of the program usually should dominate.

In abstract syntax trees, different copies of the same syntactic structure are treated
as distinct. The parameters used in the following analysis are given below.
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c number of constants in program
g number of global variables in program
I number of locals in a procedure (over all instances)
v number of vars (g + 1)
s program size (number of nodes in tree)

Label variables are counted as globals.

The basic evaluation strategy involves an initial pass to compute invariant or static
parameter passing relations, the mod relation, and an initial assertions, followed by the
application of a worklist-based inference algorithm. Most of the rules for the parameter
passing relations can be applied in an initial pass of the program, since they are invariant
over the inference process. The cost of this is small in comparison to total cost, so the
details are omitted.

The inference process is carried out by a worklist algorithm. The elements of
the worklist are assertions of the form C L> [S] x ==* y, C t> x =, val(e), or C t>
[p(ti,.. . ,t,,)] u ==* x. The worklist is initialized by a first scan of the program that
applies the direct rules requiring no antecedent conditions (such as expr-var, expr-
const, :=, and not-mod). The worklist of new assertions is processed until it is empty.
When an assertion is removed from the worklist, all possible derived assertions are cre-
ated and the new ones are added to the worklist.

The total cost of applying the inference rules is bounded at a given node by the cost
of systematically applying the rules for all possible subsidiary assertions. The bound
on the total number of assertions for any program element is (c + v)v + c. The worklist
algorithm propagates new assertions in a complex pattern, but the total cost paid is
just the sum of the incremental costs of exploring the possible new consequences of
each subsidiary assertion at each node. For example, in the seq rule, if a new assertion
C t> [S1] x ==* y is considered, we need to find all assertions C L> [S2] y =* z that might
be used with this assertion in the rule. There can be at most v such assertions and so
the incremental cost is v. There are (c + v)v + c possible assertions so the total cost is
roughly (c + v)v 2 (ignoring some special cases associated with constants). The analysis
is the same for an assertion coming in on the right, since the cost is always the total
number of possible antecedents of the rule.

The while rule is costly since the incremental cost of an assertion is the cost of
doing a simple transitive closure process. (This probably could be improved with a
more sophisticated algorithm.) The cost of applying inference rules at a while node is
(c + v)v 3 + cv 2 + c.

The total cost of information flow analysis is the sum of the costs of all the program
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elements:

O(s(c + v)v 3 )

If there are no while loops or no recursive procedures, the cost would be

O(s(c + v)v2)

We have assumed that the cost of adjoining a variable to a set of variables is constant.
In practice, the cost may depend on implementation details. The actual cost may be
c + v, which would be an additional factor in the above cost formulas.

2.8 Extensions

2.8.1 Parameterized Modules

A module consists of variables, functions, and procedures. A parameter to a module
can be a variable, function, or procedure. Functions and procedures that are passed as
values cannot reference global variables.

The basic idea is to use assumptions about the parameters of a module to derive
conditional results (summary information) that depend on those assumptions. For a
particular instantiation of the parameterized module, we can discharge assumptions
to get specific unconditional results. When doing analysis under assumptions A, the
existing rules are used along with some special rules that involve conditions in A. If an
assertion P is a result of this analysis, then the conditional summary is A D P. We take
this approach for simplicity; it would be better to associate assumptions with individual
assertions.

In the analysis of variable parameters, we must know which formals correspond to
the same actuals. The assertion x = y says that formals x and y are instantiated with
the same actual variable. The assumptions for variables are a conjunction of assertions
of this form.

The special rules say that equivalent variable parameters can be interchanged in
assertions. One such rule is

C ]Uif XS-yC L> [S] U y
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The assumptions for procedures are of the form

[P(X , .. , X.)] Xi  Xi Z

[P(Xli .. 9 .Xn)] C Xj

where the xi are considered to be specific variables and c is any constant. The first
assertion says that a call to procedure p creates a flow from the ith parameter to the
jth parameter. The second assertion creates a flow from a constant. An example of a
special rule for procedures is

C t> u = val(ti) tj: Var if C t (X1 ... , )]x Xi Xi
C t> [P(ti,... -, tn)] U ==* tj

The rules for functions are similar.

There can be a problem with combinatorial explosion since arbitrary subsets of the
conditions on the parameters may appear as conditions in the results of analysis of
the parameterized object. In practice, it may be preferable to wait until the actual
parameters are given before attempting an analysis.

2.8.2 A Difficult Example

Weiser's paper on slicing [31] presents an example which shows the limitations of the
method presented in that paper. The fundamental problem in the example appears not
to have been addressed in the literature. The same problem can occur when reasoning
about information flows.

Here is Weiser's example:

A := constant
WHILE P(k) DO

IF Q(C) THEN BEGIN
B :=A
X :=1

ELSE BEGIN
C :=B
Y :=2
END
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K :-K + 1
END

Z :=X + Y
WRITE(Z)

Our analysis technique would indicate incorrectly that there is a flow from constant
to Z. However, any execution path where the value of A has affected the value of C, in
which case the value of A might indirectly affect the value of X or Y (and hence Z), both X
and Y have already been assigned constant values that are not changed by either branch
of the conditional. Therefore, no conditional flow from A to Z can occur.

To correctly analyze this program, it is necessary to keep track of the information
flows that occur together along the same path and to require, for conditional flows, that
there be a different modification of the dependent variable in the two branches.

Let the new assertion

C t> [S] - y

have logical definition

C t> [S] x - y iff Vc: Env[val(x, c) = val(y, exec(S, c, C))]

which asserts that execution of S has the logical effect of the assignment "y := x". We
treat x -* y as a separate syntactic entity that can occur in more complex expressions.

The special connectives A and Vu (where U is, in general, a set of variables) have
similar properties to the familiar logical connectives, having commutative and associa-
tive laws (the details are tricky for Vu), and so forth. The general form of a statement
asertion is

C t [S] A

where A is formed using x - y assertions and the A and VU connectives. During
analysis, a single assertion of this form is derived for each statement. An analysis
successively refines the assertion until a fixpoint is reached.

An expression of the form A VU B corresponds to a logical expression of the form
(C(U) A A) V (- C(U) A B), where C(U) is the predicate of a conditional expression.
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The flow assertion x -- y indicates an explicit unconditional flow. Given an assertion
C t> [S] A, there is a conditional dependence on a variable x if VU occurs in A and x E U.
The variables modified (i.e. occurring on the right of a -- ) in the arguments to the
occurrence of VU are conditionally dependent on x.

The following rules are used to analyze the program.

Ct[S]A Ctc[S]B
C i> [S] A A B

-,C t> [S] mod x
C t> [SIx -+ x

C t> [y:= x] x -y

v#y
C t> [y := v - v

C t[S]A C>[S2 ]B
C L> [SI; S2] (A;B)

C > U == val(b) C t> [S1 ] A C > [S2] B
C I> [if b then S1 else S2 fi] (A Vu B)

In the last rule, U may be a set of variables. The last occurrence of ";" in the seq rule
is a new operator satisfying the distributive laws

(A Vu B); C = (A; C) Vu (B; C)

C; (A Vu B) = (C; A) V(c;u) (C; B)

where C; U is the inverse image of the set of variables in U under the basic flow mappings
in C. (It can be arranged that C is a conjunction of these by always applying the first
distributive law first). If A and B are conjunctions of basic --* assertions, then A; B
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is a conjunction of basic -- assertions consisting of the assertions obtained by chaining
assertions from A with assertions from B. That is, if x --i y is in A and y --+ z is in B,
then A; B includes x -- z.

A critical property of Vu is the following idempotence law

AVuA= A

This captures the idea that if there is no difference in the two branches or cases of a
conditional, then there is really no conditionality.

A simple example of the problem in Weiser's program is illustrated by the following
program fragment.

if q(c) then b a; x 1 else c b; y 2 fi;
if q(c) then b a; x 1 else c b; y 2 fi;
if q(c) then b a; x 1 else c, b; y 2 fi;

We are interested in whether there is a conditional flow from a to x or y. If we analyze
this program fragment, we derive several assertion 3, including

C L> [b a; x:= 1] (a--* a A a b Ac c A 1- x A y - y)
C t> [c b; y := 2] (a--* a A b b A b -- c Ax x A 2 -- y)
C t> [if q(c) then b a; x:= 1 else c b; y := 2 fi]

(a - a A a -- b A c c A 1 -- x A y -* y)

Vfc}(a --* a A b -* b A b -- c A x -- x A 2 --+ y)

These assertions precisely describe the effects of parts of the program fragment.

Analysis of one if statement gives

(a -- a A a --+ b A c --+ c A l - x A y -. y)

V{c(a --+ a A b -- b A b -- c A x - x A 2 --* y)

Let A denote this expression. Then, the result of the analysis of the complete program
fragment is A; A; A. Let C be the assertion (a --+ a A a -- b A a -- c A 1 --+ z A 2 --+ y).
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The key point in simplifying A; A; A is that the only context in which the variable a
occurs in a Vu is C Vf.} C, eliminating the conditional dependence on a.

This completes the sketch of a logical method for handling the fundamental prob-
lem in Weiser's example. It is not at all clear how this can be done in a graph-based
flow analysis framework. Graph-based methods treat individual dependencies in isola-
tion and don't extend naturally to situations in which combinations of flows must be
considered.

2.9 Conclusion

Reasoning about changes is necessary in practical software development primarily due
to continual changes in requirements and the support environment. We have devvloped
and implemented a logical technique for determining the semantic effects of program
changes based on an analysis of the abstract syntax of a generic programming language
containing many of the features used in building large systems. A new idea behind the
logic is that of approximate reasoning about changes based on a conservative interpre-
tation of the semantic information-flow relation. Our logical formalization has several
advantages over competing formalizations and is comparable in efficiency to the best al-
ternative formalization in a program flow-analysis framework. We hope that automatic
formal reasoning about the direct and indirect effects of changes will become a standard
component of everyday programming environments.
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